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Abstract 

 
Rice (Oryza sativa L.) is highly sensitive to temperature and severely vulnerable to low temperature in temperate and high-

altitude rice growing areas. Cold tolerance at the early seedling stage is a favorable trait for ensuring uniform seedling 

establishment and performance during early-season planting in double cropping rice cultivation. Detection of quantitative trait 

loci conferring cold tolerance at early seedling stage was conducted using backcross recombinant inbred lines derived from an 

interspecific cross between Oryza sativa and O. rufipogon and three cold treatments. In total, ten quantitative trait loci 

conferring early seedling cold tolerance were detected in all treatments and explained phenotypic variation ranging from 4.1 to 

45.1%, including three in treatment T1, five in T2, and six in T3. Four of ten quantitative trait loci were detected in two 

treatments. Eight of the ten quantitative trait loci had the favorable alleles originated from O. rufipogon. The quantitative trait 

loci identified in this report might be used for molecular breeding and improvement of seedling cold tolerance in rice using 

marker assisted quantitative trait loci pyramiding. © 2019 Friends Science Publishers 
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Introduction 
 

Low temperature is a pivotal factor affecting the geographic 

distribution, growth, productivity, and grain quality of field 

crops (Farooq et al., 2009, 2017), which also affects their 

planting season. As an important staple food crop for more 

than 50% the world's population, rice (Oryza sativa L.) 

inhabits tropical and subtropical areas having the optimum 

growth temperature range between 25°C and 30°C (Lu et al., 

2014). Therefore, most rice cultivars are extremely 

vulnerable to the cold injury. Cold stress is one of the main 

environmental stresses that can occur at any developmental 

stage between germination and maturity, which leads to a 

decrease of rice yield and quality (Ye et al., 2009; Cruz et 

al., 2013; Arshad et al., 2017). During the early spring in 

temperate and high-altitude rice growing areas, rice 

seedlings can frequently suffer from cold stress, which can 

result in the stunted growth habit, leaf withering and 

discoloration, and eventually result in the heterogeneous 

maturation (Kim et al., 2014). Owing to its dominant 

advantages such as lower irrigation demands and labor 

inputs, direct-seeded rice has gradually replaced 

conventional transplanted rice during rice cultivation 

(Farooq et al., 2011; Peng, 2014; Sandhu et al., 2015), 

which is becoming more and more prevalent in many Asian 

countries including China. However, in direct-seeded rice 

cultivation, the soil and water temperature of the paddy field 

is frequently below 15°C during the early-season sowing 

period, while the optimum seed germination and seedling 

growth temperature is between 25°C and 35°C (Wang et al., 

2018). Cold tolerance at the early seedling stage, therefore, 

is of great importance for ensuring uniform seedling 

establishment and stable rice production in the direct-seeded 

early season rice (Cruz and Milach, 2004). On the other 

hand, cold tolerance at the early growth stage in rice can 

extend the growing season through earlier growth during 

spring in temperate or subtropical zone. Therefore, it is very 

important to understand the mechanisms that underlie cold 

tolerance and to develop seedling stage cold-tolerant 

cultivars for rice production. 

Over the past few decades, considerable breeding 

efforts have been paid to improve the tolerance of rice to 

cold stress. Despite this, however, not much progress has 

been made in the genetic improvement of cold tolerance 

because cold tolerance in rice is a very complex trait that is 

controlled by quantitative trait loci (QTLs) (Zhang et al., 

2014a) and the limited rice germplasms with strong cold 

tolerance are available. Thus, the breeding and improvement 

of cold tolerance in rice using traditional breeding technique 

is not desirable in practice. However, detection of QTLs 
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conferring cold tolerance can provide an effective and 

promising approach to understand genetic mechanisms of 

this adaptation in rice, and marker-assisted QTL pyramiding 

would facilitate the improvement of cold tolerance in rice. 

Up to date, over 250 cold tolerant QTLs in rice at different 

growth stages have been mapped on all 12 chromosomes 

using various populations derived from interspecific and/or 

intraspecific crosses and evaluation criteria (Koseki et al., 

2010; Wang et al., 2011; Kim et al., 2014; Zhang et al., 

2014b; Mao et al., 2015; Pan et al., 2015; Zhu et al., 2015; 

Luo et al., 2016; Zhao et al., 2017; Yang et al., 2018). Some 

of those QTLs were fine-mapped, cloned and characterized, 

including five cold tolerant QTLs, COLD1, qCTS-9, qLTG3-

1, HAN1 and LTG1, for the early growth stage (Fujino et al., 

2008; Lu et al., 2014; Ma et al., 2015; Zhao et al., 2017; 

Mao et al., 2019) and two QTLs, Ctb1 and CTB4a, for the 

reproductive stage (Saito et al., 2010; Zhang et al., 2017). 

For a better understanding of cold tolerance in rice, it is 

essential to identify additional QTLs/genes in rice, especially 

in wild relatives. 

Dongxiang common wild rice (Oryza rufipogon 

Griff., referred to as DCWR) is the northernmost rice 

worldwide, which is located in Dongxiang county, Jiangxi 

province. This species is the progenitor of the cultivated 

Asian rice and belongs to a national second-class 

protected plant in China (Xie et al., 2010). So far, 

numerous QTLs have been identified and even cloned for 

various important traits in DCWR, including cold 

tolerance (Xiao et al., 2014, 2015; Mao et al., 2015; Luo 

et al., 2016), fertility restoration (Hu et al., 2016), 

cytoplasmic male sterility (Xie et al., 2018), and 

overwintering (Liang et al., 2018). Of these, the strong 

cold tolerance is the most remarkable trait, promoting 

DCWR to overwinter safely at low temperatures of minus 

12.8 degrees (Mao et al., 2015; Zhou et al., 2018). 

Therefore, DCWR has been a very important and valuable 

germplasm for studying the mechanisms of rice cold 

tolerance. Previous QTL mapping studies on cold 

tolerance of DCWR have focused on the seedling and 

booting stage. As for seedling stage, over 56 cold tolerant 

QTLs were detected on all the 12 chromosomes using 

various bi-parental populations derived from DCWR, 

assessment methods and parameters (Liu et al., 2013; 

Xiao et al., 2014, 2015; Mao et al., 2015; Luo et al., 

2016), and 92.85% (52/56) of these QTLs had beneficial 

alleles contributed by DCWR. Although these candidate 

QTLs that conferred cold tolerance to DCWR in the bi-

parental populations are known, this information is still 

insufficient to reveal the genetic mechanisms on the 

strong cold tolerance of DCWR in the northernmost 

habitat, compared with rice cultivars and other wild 

species, accordingly, which limited its extensive 

applications to facilitate rice cold tolerance breeding. 

In the present study, detection of the QTLs conferring 

cold tolerance at the early seedling stage was conducted to 

using a backcross-inbred line population derived from the 

interspecific cross between a rice cultivar Xieqingzao B and 

an accession of DCWR. QTL analysis derived from DCWR 

will provide additional or novel alleles to improve cold 

tolerance of rice and genetic information to understand the 

molecular mechanism underlying this adaptation. 

 

Materials and Methods 
 

Plant Materials 

 

A total of 202 backcross inbred lines (BILs, BC1F5), derived 

from the interspecific backcross between Xieqingzao B (XB) 

and DCWR by the single-seed descent (Chen et al., 2006), 

was used for QTL detection. The recurrent parent XB, a 

cold-susceptible indica cultivar, is the maintainer line of 

Xieqingzao A belonging to dwarf-wild-abortive type 

cytoplasmic male sterility (O. sativa ssp. indica), and the 

donor parent DCWR, a cold-tolerant wild relative, is an O. 

rufipogon accession collected from in situ conservation 

populations in Dongxiang county, Jiangxi Province, which 

is no longer available. 

 

Phenotypic Evaluation of Cold Tolerance 

 

A randomized complete block design was performed to 

evaluate cold tolerance of the BILs in a temperature-

controlled phytotron growth chamber. 50 seeds of each BIL 

and the recurrent parent XB were treated in a drying oven at 

45°C for 48 h for breaking dormancy. After surface-

sterilization in 0.6% sodium hypochlorite solution 

(Murashige and Skoog, 1962), rice seeds were washed with 

distilled water four times. All the seeds were placed on 

Whatman filter paper saturated with distilled water in 90 × 10 

mm Petri dishes and incubated at 30°C for 3 d. After 

germination, the seedlings were grown in the 90 × 10 mm 

Petri dishes containing the Murashige and Skoog solution. At 

the one-leaf stage, 40 strong and healthy seedlings of each 

line were subjected to the cold treatment at 3°C for 72 h. 

After recovery growth for seven days, cold tolerance was 

evaluated based on the percentage of the seedling mortality 

(SM). The seedlings were regarded as dead if their leaves 

were completely withered, whereas those exhibiting normal 

growth with green leaves were regarded as surviving. 

Percentage of the SM was calculated as the following 

formulas: SM% = dead seedlings/total seedlings × 100. The 

recovery growth experiments were conducted in the growth 

chamber with a 16/8 h light/dark photoperiod (32°C/28°C) 

and 70% relative humidity. The evaluation of cold tolerance 

was performed with two replications under three cold 

treatments (T1, T2, and T3). The mean data of the SM over 

two replications were used for data analysis. 

 

Data Analysis and QTL Mapping 

 

The genetic map in this report was previously constructed 

by Chen et al. (2006) and Huang et al. (2008), respectively, 
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which consisted of 149 DNA markers including 108 simple 

sequence repeats and 41 restriction fragment length 

polymorphism markers. It covered a total genetic distance of 

1306.4 cM, with an average distance of 9.5 cM between 

adjoining markers. 

The mean data of the seedling mortality over two 

replications were used for QTL mapping. QTL detection 

was conducted using the Composite Interval Mapping (CIM) 

approach of the Windows QTL Cartographer ver. 2.5 (Wang 

et al., 2012). CIM model 6, backward and forward 

regression at a probability threshold of 0.01, a filtration 

window size of 10 cM and a walking speed of 1 cM were 

chosen for the genome scan. A logarithm of the odds (LOD) 

significance threshold of 2.0 and above was used to 

determine a putative QTL. The QTLs were designated 

following the nomenclature proposed by McCouch and 

CGSNL (2008). 

The result of phenotypic statistics including minimum, 

maximum, mean, standard deviation (SD), skewness, 

kurtosis, and coefficient of variation (CV) were calculated 

by the DSum function of the Windows QTL Cartographer 

2.5 (Wang et al., 2012). Pearson correlation coefficient 

between the cold treatments was calculated using the 

Pearson function of the Microsoft Excel 2007. 
 

Results 
 

Phenotypic Performance of Cold Tolerance 
 

Table 1 presents the descriptive statistics of SM of the BILs 

in three cold treatments. Among three treatments, CV of SM 

in the treatment T1 is the highest (0.50), and that of SM in 

the treatment T3 is the lowest (0.41). The SM exhibited 

wide phenotypic variations with continuous distribution in 

the BILs in all three cold treatments (T1, T2, and T3), 

suggesting that cold tolerance is controlled by multigenes. 

The mean SM values of the BILs in the treatments T1, T2 

and T3 were 59.91, 68.31 and 64.13%, respectively, and 

much less than those of their corresponding parent XB. 

Based on the Pearson correlation analysis, strong positive 

and highly significant correlations (P < 0.01) were found for 

the SM value between the treatments T1 and T2, T2 and T3, 

and T1 and T3, with coefficients of 0.579, 0.886, and 0.893, 

respectively. 
 

QTL Analysis 
 

In total, ten QTLs with a LOD score more than 2.0 were 

detected for early seedling cold tolerance, including three 

QTLs for the SM in the treatment T1, five in the treatment 

T2, and six in the treatment T3 (Table 2 and Fig. 1). These 

were distributed on the chromosomes 2, 4, 5, 7, 8 and 9 

(Fig. 1) and the phenotypic variance (R
2
) explained by an 

individual QTL ranged 4.1–45.1%. 

In the treatment T1, three QTLs for the SM were 

mapped on chromosomes 2, 4, and 8, respectively, and 

explained ranging from 5.3 to 6.5% of the phenotypic 

variance. Two of the QTLs, qCTS4 and qCTS8, had the trait-

enhancing alleles from XB, which increased the seedling 

mortality by 12.81 and 9.28%, respectively. The remaining 

QTL qCTS2.1 had a LOD score of 3.25 and the highest R
2 

(6.5%), with the enhancing allele derived from DCWR. 

In the treatment T2, five QTLs for the SM were 

detected on the chromosomes 5, 7 and 9. The QTL qCTS9.1 

was the only major-effect QTL detected, having a LOD 

score of 5.58 and 41.5% of R
2
. The remaining four QTLs 

explained 6.3–8.0% of total phenotypic variance. The 

trait-enhancing alleles at the five loci were all derived 

from DCWR, and caused a decline of 10.10–13.92% of the 

SM in seedlings. 

In the treatment T3, six QTLs for the SM were 

detected, and they explained from 4.1 to 6.2% of R
2
. Among 

these, qCTS4 with a LOD score of 2.40 explained 6.2% of 

the phenotypic variance, and the XB allele at this locus 

increased SM by 11.54%. For the other five QTLs, the trait-

enhancing alleles were all derived from DCWR. 

 

Discussion 
 

Cold temperature stress at the early seedling stage is one 

of the major restrictions affecting the seedling 

establishment and performance of rice in temperate and 

high-altitude rice growing areas (Jin et al., 2018). 

Therefore, cold tolerance at the early seedling stage is the 

highest priority in rice breeding programs, which could be 

widely utilized in the direct-seeded rice cultivation. 

DCWR possesses an exceedingly strong innate 

tolerance to low temperature, and it is invaluable to improve 

cold tolerance in rice breeding. Therefore, DCWR has been 

made considerable efforts in germplasm to improve cold 

tolerance in rice. However, the mechanisms on the 

adaption to the cold temperatures of the northernmost 

habitat remain unclear in DCWR. On the other hand, the 

cold stress intensity (in terms of the treatment 

temperature and/or duration) play pivotal role in the 

accurate and effective cold tolerance evaluation. In 

present study, cold treatment of more severe stress 

intensity (3°C for 72 h) was employed to evaluate the 

cold tolerance of the BILs derived from DCWR, compared 

to previous studies (Mao et al., 2015; Xiao et al., 2014, 

2015; Luo et al., 2016). The seedling mortality of the BILs 

showed a continuous distribution, suggesting that the 

intensity of the cold stress (3°C for 72 h) was suitable for 

evaluating cold tolerance at the early seedling stage and 

QTL detection. As a result, a total of ten QTLs were found 

to be associated with this trait. Four QTLs (qCTS4, qCTS5.1, 

qCTS9.1, and qCTS9.2) were stably detected in two of three 

cold treatments. Notably, the O. rufipogon-derived alleles at 

the eight loci (80%) could improve cold tolerance of rice 

seedlings in the XB background, which may explain the 

strong cold tolerance of DCWR. On the other hand, two of 

the ten cold-tolerant QTL alleles derived from cold-sensitive 

parent XB, suggesting that indica also harbor some cold 
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tolerant alleles, which coincided with the results reported by 

Zhang et al. (2012) and Zhu et al. (2015). Moreover, the 

QTL analysis results revealed that cold tolerance at the early 

seedling stage was mainly controlled by one major QTL 

with phenotypic variance explained (PVE) of 41.5%, and 

multiple minor loci with PVE of less than 10% individually, 

which is consistent with a previous study (Koseki et al., 

2010). 

To assess the QTL reliability in this report, the 

physical positions of the QTLs detected were compared to 

those of the QTLs for the same trait at the seedling stage 

identified in previous studies using the Gramene annotated 

nipponbare sequence 2009 map (Gramene, 2013). As a 

result, six of ten QTLs overlapped with the published QTLs. 

qCTS5.1 and qCTS5.2 co-located with the QTL for seedling 

survival rate in previous studies (Liu et al., 2013; Yang et 

al., 2013). qCTS7.1 and qCTS7.2 overlapped with the QTL 

for seedling survival rate detected by Mao et al. (2015) and 

Liu et al. (2013), respectively. qCTS8 corresponded the 

QTL qCTSS-8 identified by Yang et al. (2013) and COLD2 

identified by Ma et al. (2015), respectively. qCTS9.1 

coincided with a QTL identified in the three studies (Xiao et 

al., 2014; Zhang et al., 2014b; Zhao et al., 2017). 

Furthermore, two QTL regions, qCTS7.2 and qCTS9.1, 

contained a candidate gene LOC_Os07g22494 and a 

functional gene Os09g0410300, respectively, both related 

with cold tolerance (Liu et al., 2013; Zhao et al., 2017). 

Results from QTL comparison detected in different 

environments and genetic backgrounds showed accuracy 

and consistency of QTLs identified for seedling survival 

rate or/and seedling mortality. In addition, all these QTLs 

were detected in different studies, providing good 

candidates for the allelic relationship studies, QTL fine-

mapping and cloning. 

On the other hand, the remaining four cold tolerance 

QTLs (qCTS2.1, qCTS2.2, qCTS4, and qCTS9.2) were 

Table 1: Phenotypic performance of seedling mortality (%) in a BIL population of Xieqingzao B (XB)//XB/Dongxiang wild rice 

 
Trait Treatment Mean  SD CV Range Skewness Kurtios XB 

SM T1 59.91  29.87  0.50  0.00-100.00 -0.34  -1.06  92.8 

 T2 68.31  29.14  0.43  0.00-100.00 -0.70  -0.62  97.6 
  T3 64.13  26.19  0.41  0.00-100.00 -0.37  -0.92  95.7 

 

Table 2: QTLs for cold tolerance at the early seedling stage detected in the BIL population of XB//XB/Dongxiang wild rice 

 
Treatment QTL Interval LOD Aa R2 Previous reports 

T1 qCTS2 RZ742-M1285 3.25  -9.14  6.5   

 qCTS4 RM273-M303 2.48  12.81  5.3   
 qCTS8 RM256-M281 2.63  9.28  5.5  Yang et al., 2013; Ma et al., 2015 

T2 qCTS5.1 RM3870-RZ70 3.38  -10.10  6.3  Liu et al., 2013 

 qCTS7.1 RM5752-M6574 2.29  -12.83  8.0  Mao et al., 2015 
 qCTS7.2 RM125-M214 2.71  -13.92  6.4  Liu et al., 2013 

 qCTS9.1 RM1896-M201 5.58  -24.08  41.5  Xiao et al., 2014; Zhang et al., 2014b; Zhao et al., 2017 

 qCTS9.2 RG451-RM245 3.62  -10.76  7.9   

T3 qCTS2 RM555-M3294 2.88  -8.78  6.5   

 qCTS4 RM273-M303 2.40  11.54  6.2   

 qCTS5.1 RM3870-RZ70 3.18  -8.76  6.0  Liu et al., 2013 
 qCTS5.2 RZ255-RM274 2.11  -7.04  4.1  Yang et al., 2013 

 qCTS9.1 RM219-M1896 2.25  -8.28  5.4  Xiao et al., 2014; Zhang et al., 2014b; Zhao et al., 2017 

  qCTS9.2 RG451-RM245 2.53  -8.15  5.6    
* A indicates that an additive effect of replacing a Xieqingzao B allele by a Dongxiang wild rice allele; R2 indicates that the proportion of phenotypic variance explained by the QTL 

effect 

 

 
 

Fig. 1: Chromosomal position of the QTL for cold tolerance at early seedling stage 
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firstly detected in the present study. Furthermore, the 

enhancing alleles at three novel loci (qCTS2.1, qCTS2.2 and 

qCTS9.2) are likely to be the O. rufipogon-specific alleles 

existing in DCWR, which requires further confirmation. Ma 

et al. (2015) reported that the SNP2 in COLD1, derived 

from O. rufipogon, conferred chilling tolerance to japonica 

rice. At SNP2 site, XB had the nucleotide T, whereas 

DCWR had A, which is associated with strong artificial 

selection during domestication. Similarly, the favorable 

alleles were found to derive from wild rice, contrasting with 

previous studies showing that these originated from 

cultivated rice. More evidence is needed to investigate 

whether this difference results from ecological adaptation or 

artificial selection in the domestication process. 

The XB//XB/DCWR BILs were previously employed 

to detect QTL for yield components (Huang et al., 2008) and 

resistance to the whitebacked planthopper (Chen et al., 2010), 

respectively. Three QTLs identified by Huang et al. (2008), 

qTGWT-8, qTNSP-9, and qNFGP-9, were located in the 

corresponding regions of qCTS8, qCTS9.1, and qCTS9.2, 

respectively. Regarding the second trait, among the three 

QTLs detected by Chen et al. (2010), qWph5 and qWph9 

were located in the regions for qCTS5.1 and qCTS9.2, 

respectively, and the favorable O. rufipogon alleles 

decreased the seedling mortality in both abiotic and 

biotic stress. It is necessary to further ascertain the 

allelic relationship between the QTLs for cold tolerance, 

grain yield and resistance to the whitebacked planthopper 

located in the same chromosomal region. 

Jiangxi province is a traditional area for double-season 

rice cropping in China. In the early rice season in Jiangxi 

province, growers would anticipate sowing date as early as 

possible to extend the rice-growing season and, in 

consequence, to increase grain yield. However, the planting 

of early-season rice usually delayed by cold spells in early 

spring, which subsequently delay the planting of the 

following late-season rice, and thus ultimately affects 

flowering and grain filling when low temperature occurs 

(middle or late September). From this perspective, the 

development of early-season cold tolerant rice is important 

for the double-cropping rice areas, especially for direct-

seeded cultivation. Therefore, the molecular markers linked 

to the QTLs and the favorable O. rufipogon alleles detected 

in present report could be used to develop early-season 

indica rice cultivars with cold tolerance at the early seedling 

stage for direct-seeded cultivation in double-cropping rice 

area. 

 

Conclusion 
 

The early seedling cold tolerance is a favorable 

characteristic for ensuring uniform seedling establishment 

and stabilizing grain yield in temperate and high-altitude 

rice growing regions, which is a quantitative trait 

controlled by multiple genes. Further studies are needed 

to fine map and clone these novel QTLs conferring cold 

tolerance at the early seedling stage in the future, and the 

favorable O. rufipogon alleles identified could be utilized 

to improve seedling cold tolerance in rice using marker-

assisted QTL pyramiding. 
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